Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Group A Streptococcus modulates RAB1- and PIK3C3 complex-dependent autophagy.

Identifieur interne : 000115 ( Main/Exploration ); précédent : 000114; suivant : 000116

Group A Streptococcus modulates RAB1- and PIK3C3 complex-dependent autophagy.

Auteurs : Hirotaka Toh [Japon] ; Takashi Nozawa [Japon] ; Atsuko Minowa-Nozawa [Japon] ; Miyako Hikichi [Japon] ; Shintaro Nakajima [Japon] ; Chihiro Aikawa [Japon] ; Ichiro Nakagawa [Japon]

Source :

RBID : pubmed:31177902

Abstract

Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A Streptococcus (GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.Abbreviations: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A streptococcus; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2.

DOI: 10.1080/15548627.2019.1628539
PubMed: 31177902
PubMed Central: PMC6984453


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Group A
<i>Streptococcus</i>
modulates RAB1- and PIK3C3 complex-dependent autophagy.</title>
<author>
<name sortKey="Toh, Hirotaka" sort="Toh, Hirotaka" uniqKey="Toh H" first="Hirotaka" last="Toh">Hirotaka Toh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nozawa, Takashi" sort="Nozawa, Takashi" uniqKey="Nozawa T" first="Takashi" last="Nozawa">Takashi Nozawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Minowa Nozawa, Atsuko" sort="Minowa Nozawa, Atsuko" uniqKey="Minowa Nozawa A" first="Atsuko" last="Minowa-Nozawa">Atsuko Minowa-Nozawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hikichi, Miyako" sort="Hikichi, Miyako" uniqKey="Hikichi M" first="Miyako" last="Hikichi">Miyako Hikichi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nakajima, Shintaro" sort="Nakajima, Shintaro" uniqKey="Nakajima S" first="Shintaro" last="Nakajima">Shintaro Nakajima</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Life Science Dentistry, The Nippon Dental University, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aikawa, Chihiro" sort="Aikawa, Chihiro" uniqKey="Aikawa C" first="Chihiro" last="Aikawa">Chihiro Aikawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nakagawa, Ichiro" sort="Nakagawa, Ichiro" uniqKey="Nakagawa I" first="Ichiro" last="Nakagawa">Ichiro Nakagawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31177902</idno>
<idno type="pmid">31177902</idno>
<idno type="doi">10.1080/15548627.2019.1628539</idno>
<idno type="pmc">PMC6984453</idno>
<idno type="wicri:Area/Main/Corpus">000258</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000258</idno>
<idno type="wicri:Area/Main/Curation">000258</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000258</idno>
<idno type="wicri:Area/Main/Exploration">000258</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Group A
<i>Streptococcus</i>
modulates RAB1- and PIK3C3 complex-dependent autophagy.</title>
<author>
<name sortKey="Toh, Hirotaka" sort="Toh, Hirotaka" uniqKey="Toh H" first="Hirotaka" last="Toh">Hirotaka Toh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nozawa, Takashi" sort="Nozawa, Takashi" uniqKey="Nozawa T" first="Takashi" last="Nozawa">Takashi Nozawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Minowa Nozawa, Atsuko" sort="Minowa Nozawa, Atsuko" uniqKey="Minowa Nozawa A" first="Atsuko" last="Minowa-Nozawa">Atsuko Minowa-Nozawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hikichi, Miyako" sort="Hikichi, Miyako" uniqKey="Hikichi M" first="Miyako" last="Hikichi">Miyako Hikichi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nakajima, Shintaro" sort="Nakajima, Shintaro" uniqKey="Nakajima S" first="Shintaro" last="Nakajima">Shintaro Nakajima</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Life Science Dentistry, The Nippon Dental University, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aikawa, Chihiro" sort="Aikawa, Chihiro" uniqKey="Aikawa C" first="Chihiro" last="Aikawa">Chihiro Aikawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nakagawa, Ichiro" sort="Nakagawa, Ichiro" uniqKey="Nakagawa I" first="Ichiro" last="Nakagawa">Ichiro Nakagawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Autophagy</title>
<idno type="eISSN">1554-8635</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A
<i>Streptococcus</i>
(GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.
<b>Abbreviations</b>
: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A
<i>streptococcus</i>
; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31177902</PMID>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8635</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Autophagy</Title>
<ISOAbbreviation>Autophagy</ISOAbbreviation>
</Journal>
<ArticleTitle>Group A
<i>Streptococcus</i>
modulates RAB1- and PIK3C3 complex-dependent autophagy.</ArticleTitle>
<Pagination>
<MedlinePgn>334-346</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15548627.2019.1628539</ELocationID>
<Abstract>
<AbstractText>Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A
<i>Streptococcus</i>
(GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.
<b>Abbreviations</b>
: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A
<i>streptococcus</i>
; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Toh</LastName>
<ForeName>Hirotaka</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nozawa</LastName>
<ForeName>Takashi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Minowa-Nozawa</LastName>
<ForeName>Atsuko</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hikichi</LastName>
<ForeName>Miyako</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nakajima</LastName>
<ForeName>Shintaro</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-4858-3391</Identifier>
<AffiliationInfo>
<Affiliation>Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aikawa</LastName>
<ForeName>Chihiro</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nakagawa</LastName>
<ForeName>Ichiro</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">0000-0001-6552-1702</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Autophagy</MedlineTA>
<NlmUniqueID>101265188</NlmUniqueID>
<ISSNLinking>1554-8627</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Autophagy</Keyword>
<Keyword MajorTopicYN="Y">NAD-glycohydrolase</Keyword>
<Keyword MajorTopicYN="Y">PIK3C3</Keyword>
<Keyword MajorTopicYN="Y">RAB GTPase</Keyword>
<Keyword MajorTopicYN="Y">group A Streptococcus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31177902</ArticleId>
<ArticleId IdType="doi">10.1080/15548627.2019.1628539</ArticleId>
<ArticleId IdType="pmc">PMC6984453</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Autophagy. 2016;12(3):547-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27046250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Nov;5(11):e1000670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1998 Jul;178(1):147-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9652434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Feb 4;200(3):287-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Jun 25;7(6):453-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Aug 06;2:e00947</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23930225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2014 Feb;12(2):101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24384599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Dec;19(12):5360-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18843052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Mar;7(3):279-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21189453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Jan;24(1):58-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24296784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Mar 03;12(3):e1005468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26938870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Jan 11;132(1):27-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Apr 13;293(15):5386-5395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29371398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Dec 16;6(12):e1001230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21187903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2011 Feb;13(2):132-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21258367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Jul 17;55(2):238-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24954904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2013 Nov 27;32(23):3066-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24162724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurodegener. 2016 Dec 9;11(1):76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27938392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Jan;7(1):17-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20980813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Dec 26;52(6):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24268578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2013 Mar;9(3):361-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23291478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2012 Aug;14(8):1149-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22452336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2005 Dec;1(4):e35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16333395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(6):e1003394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23762025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Sep;7(9):957-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21606683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Nov 20;22(22):2135-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23084991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2014 Sep 16;5(5):e01690-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25227466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jan 13;12(1):e0170138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28085926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 5;288(27):20064-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23689507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Sep 15;36(18):2790-2807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28848034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 15;11(1):e0147061</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26771875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 May;6(4):506-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20505359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Nov;30(3):625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9822827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5486-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23509291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 20;469(7330):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jan 22;57(2):219-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25578879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Dec 11;14(6):675-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24331465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Jul;15(7):741-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23685627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2014 Dec;16(12):1806-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25052408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 16;285(29):22666-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20472552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Jun 14;11(6):563-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2000 Jul;13(3):470-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10885988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 23;338(6110):1072-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23112293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Nov 5;306(5698):1037-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15528445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2015 Mar;75:112-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25555675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Jan 12;104(1):143-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
<li>Tokyo</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Toh, Hirotaka" sort="Toh, Hirotaka" uniqKey="Toh H" first="Hirotaka" last="Toh">Hirotaka Toh</name>
</region>
<name sortKey="Aikawa, Chihiro" sort="Aikawa, Chihiro" uniqKey="Aikawa C" first="Chihiro" last="Aikawa">Chihiro Aikawa</name>
<name sortKey="Hikichi, Miyako" sort="Hikichi, Miyako" uniqKey="Hikichi M" first="Miyako" last="Hikichi">Miyako Hikichi</name>
<name sortKey="Minowa Nozawa, Atsuko" sort="Minowa Nozawa, Atsuko" uniqKey="Minowa Nozawa A" first="Atsuko" last="Minowa-Nozawa">Atsuko Minowa-Nozawa</name>
<name sortKey="Nakagawa, Ichiro" sort="Nakagawa, Ichiro" uniqKey="Nakagawa I" first="Ichiro" last="Nakagawa">Ichiro Nakagawa</name>
<name sortKey="Nakajima, Shintaro" sort="Nakajima, Shintaro" uniqKey="Nakajima S" first="Shintaro" last="Nakajima">Shintaro Nakajima</name>
<name sortKey="Nakajima, Shintaro" sort="Nakajima, Shintaro" uniqKey="Nakajima S" first="Shintaro" last="Nakajima">Shintaro Nakajima</name>
<name sortKey="Nozawa, Takashi" sort="Nozawa, Takashi" uniqKey="Nozawa T" first="Takashi" last="Nozawa">Takashi Nozawa</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000115 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000115 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31177902
   |texte=   Group A Streptococcus modulates RAB1- and PIK3C3 complex-dependent autophagy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31177902" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020